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Abstract

An indecomposable Riemannian symmetric space which admits non-trivial twistor spinors has
constant sectional curvature. Furthermore, each homogeneous Riemannian manifold with parallel
spinors is flat. In the present paper we solve the twistor equation on all indecomposable Lorentzian
symmetric spaces explicitly. In particular, we show that there are — in contrast to the Riemannian
case — indecomposable Lorentzian symmetric spaces with twistor spinors, which have non-constant
sectional curvature and non-flat and non-Ricci flat homogeneous Lorentzian manifolds with parallel
spinors. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let (Mn, g) be an oriented semi-Riemannian spin manifold with the spinor bundleS.
The twistor operatorD is defined as the composition of the spinor derivative∇S with the
projectionp onto the kernel of the Clifford multiplicationµ:

D : 0(S)
∇S→0(T ∗M ⊗ S)

g=0(TM ⊗ S)
p→0(kerµ).

The solutions of the conformally invariant equationDϕ = 0 are called twistor spinors.
Twistor spinors were introduced by Penrose in General Relativity (see [12–14]). They are
related to Killing vector fields in semi-Riemannian supergeometry (see [1]). In the last few
years essential results concerning the geometry of Riemannian spin manifolds admitting
twistor spinors were obtained by A. Lichnerowicz, T. Friedrich, K. Habermann, H.-B.
Rademacher, W. Kuehnel and other authors. For a survey on the literature cf. [3,10]. In the
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Lorentzian setting a relation between a certain class of solutions of the twistor equation
and the Fefferman spaces occurring in CR-geometry was established (cf. [2,11]). Special
solutions of the Lorentzian twistor equation, the Killing spinors, were studied by Bohle [4].
Killing spinors in the general pseudo-Riemannian setting were discussed by Kath [9].

In the present paper we study the twistor equation on Lorentzian symmetric spaces.
Using the explicit classification results we determine the twistor spinors on all indecom-
posable Lorentzian symmetric spaces explicitly. Let us remark that an indecomposable
(=irreducible)Riemanniansymmetric space which admits non-trivial twistor spinors has
constant sectional curvature. We will see below that the same is true forirreducibleLorentzian
symmetric spaces. But in the Lorentzian signature, there is second type of indecomposable
symmetric spaces, which are non-irreducible and have solvable transvection group. This
type of Lorentzian symmetric spaces admits solutions of the twistor equation although it
has non-constant sectional curvature. Furthermore, we will see that there are non-flat and
non-Ricci-flat Lorentzian symmetric spaces with parallel spinors. In contrast to that, each
homogeneousRiemannianmanifold with parallel spinors has to be flat.

Let T (Mn, g) denote the space of all twistor spinors of(Mn, g) and letn ≥ 3. It is
known that

dimT (Mn, g) ≤ 2 · 2[n/2]

(see [3]). If(Mn, g) is conformally flat and simply connected, then one has dimT (Mn, g) =
2 · 2[n/2]. In the present paper we prove, in particular

1. If (Mn, g) is an indecomposable non-conformally flat Lorentzian symmetric spin
manifold of dimensionn ≥ 3, then each twistor spinor is parallel and dimT (Mn, g) =
q · 2[n/2], whereq = 1

2,
1
4 or 0, depending on the fundamental groupπ1(M) and on

the spin structure of(Mn, g).
2. If (Mn, g) is an indecomposable conformally flat Lorentzian symmetric spin manifold

of dimensionn ≥ 3 and non-constant sectional curvature, then dimT (Mn, g) =
q·2[n/2], whereq = 2, 3

2,1,
3
4 or 0, depending onπ1(M) and on the spin structure.

3. If (Mn, g) is a Lorentzian symmetric spin manifold of dimensionn ≥ 3 and constant
sectional curvature, then dimT (Mn, g) = q · 2[n/2], whereq = 2,1, or 0, depending
onπ1(M) and on the spin structure.

2. Lorentzian symmetric spaces

Let us first recall the description of Lorentzian symmetric spaces. A connected semi- Rie-
mannian manifold(Mn, g) is calledindecomposable, if there is no proper, non-degenerate
subspace ofTxM invariant under the action of the holonomy group Holx(g). Each simply
connected semi-Riemannian symmetric space is isometric to a productM0×M1×· · ·×Mr ,
whereMi, i = 1, . . . , r, are indecomposable simply connected semi-Riemannian symmet-
ric spaces of dimension≥ 2 andM0 is semi-Euclidean.

Let (Mn, g) be a Lorentzian symmetric space. ByG(M) we denote the group of trans-
vections of(Mn, g) and byg its Lie algebra. One has the following structure result.
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Theorem 1 ([8]). Let (Mn, g) be an indecomposable Lorentzian symmetric space of di-
mensionn ≥ 2. Then the Lie algebrag of the transvection group of(Mn, g) is either
semi-simple or solvable.

Let λ = (λ1, . . . , λn−2) be an(n − 2)-tupel of real numbersλj ∈ R\{0} and let us
denote byMn

λ the Lorentzian spaceMn
λ := (Rn, gλ), where

(gλ)(s,t,x) := 2 ds dt +
n−2∑
j=1

λjx
2
j ds2 +

n−2∑
j=1

dx2
j .

If λπ = (λπ(1), . . . , λπ(n−2)) is a permutation ofλ andc > 0, thenMn
λ is isometric to

Mn
cλπ

.

Theorem 2 ([7,8]). Let (Mn, g) be an indecomposable solvable Lorentzian symmetric
space of dimensionn ≥ 3. Then(Mn, g) is isometric toMn

λ/A, whereλ ∈ (R\{0})n−2

and A is a discrete subgroup of the centralizerZI(Mλ)(G(Mλ)) of the transvection group
G(Mλ) in the isometry groupI (Mλ) ofMn

λ .

For the centralizerZλ := ZI(Mλ)(G(Mλ)) the following theorem is known.

Theorem 3([5]). Letλ = (λ1, . . . , λn−2) be a tupel of non-zero real numbers.
1. If there is a positiveλi or if there are two numbersλi, λj such thatλi/λj /∈ Q2 , then
Zλ ' R andϕ ∈ Zλ if and only ifϕ(s, t, x) = (s, t + α, x), α ∈ R.

2. Letλi = −k2
i < 0 andki/kj ∈ Q for all i, j ∈ {1, . . . , n − 2}. Thenϕ ∈ Zλ if and

only if

ϕ(s, t, x) = (
s + β, t + α, (−1)m1x1, . . . , (−1)mn−2xn−2

)
,

whereα ∈ R,m1, . . . , mn−2 ∈ Z andβ = miπ/ki for all i = 1, . . . , n− 2.

Let us denote bySn1(r) the pseudo-sphere

Sn1(r) := {x ∈ Rn+1,1|〈x, x〉n+1,1 = −x2
1 + x2

2 + · · · + x2
n+1 = r2} ⊂ Rn+1,1,

and byHn
1 (r) the pseudo-hyperbolic space

Hn
1 (r) := {x ∈ Rn+1,2|〈x, x〉n+1,2= − x2

1 − x2
2 + x2

3 + · · · +x2
n+1=−r2} ⊂ Rn+1,2,

with the Lorentzian metrics induced by〈·, ·〉n+1,1 and〈·, ·〉n+1,2, respectively.

Theorem 4([6,15]). Let(Mn, g) be an indecomposable semi-simple Lorentzian symmetric
space of dimensionn ≥ 3.Then(Mn, g) has constant sectional curvaturek 6= 0.Therefore,
it is isometric toSn1(r)/{±I } or Sn1(r) (k = 1/r2 > 0), or to a Lorentzian covering of
Hn

1 (r)/{±I } (k = −1/r2 < 0).
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3. Spinor representation

For concrete calculations we will use the following realization of the spinor representa-
tion. Let Cliffn,k be the Clifford algebra of(Rn,−〈·, ·〉k), where〈·, ·〉k is the scalar product
〈x, y〉k := −x1y1−· · ·−xkyk+xk+1yk+1+· · ·+xnyn. For the canonical basis(e1, . . . , en)

ofRn one has the following relations in Cliffn,k : ei ·ej +ej ·ei = −2εj δij , whereεj = −1
whenj ≤ k andεj = 1 whenj > k. Denote

τj =
{

i, j ≤ k,

1, j > k,

and

U =
(

i 0
0 −i

)
, V =

(
0 i
i 0

)
, E =

(
1 0
0 1

)
, T =

(
0 −i
i 0

)
.

If n = 2m is even, we have an isomorphism

φ2m,k : Cliff C2m,k
∼→M(2m;C)

given by the Kronecker product

φ2m,k(e2j−1) = τ2j−1 E ⊗ · · · ⊗ E ⊗ U ⊗ T ⊗ · · · ⊗ T ,

φ2m,k(e2j ) = τ2j E ⊗ · · · ⊗ E ⊗ V ⊗ T ⊗ · · · ⊗ T︸ ︷︷ ︸
j−1

. (1)

If n = 2m+ 1 is odd, we have the isomorphism

φ2m+1,k : Cliff C2m+1,k
∼→M(2m;C)⊕M(2m;C)

given by

82m+1,k(ek) = (82m,k(ek),82m,k(ek)), k = 1, . . . ,2m,
82m+1,k(en) = τn(iT ⊗ · · · ⊗ T ,−iT ⊗ · · · ⊗ T ).

(2)

Let Spin(n, k) ⊂ Cliff n,k be the spin group. The spinor representation is given by

kn,k = φ̂n,k|Spin(n,k) : Spin(n, k) → GL(C2[n/2]
).

whereφ̂n,k = φn,k whenn = 2m andφ̂n,k = proj1 ◦ φn,k whenn = 2m + 1. We denote
this representation by1n,k. If n = 2m,12m,k splits into the sum12m,k = 1+

2m,k ⊕1−
2m,k,

where1±
2m,k are the eigenspaces of the endomorphismφ2m,k(e1, . . . , e2m) to the eigenvalue

±im+k. Let us denote byu(δ) ∈ C2 the vectoru(δ) = (1/
√

2)(1−δi), δ = ±1, and let

u(δ1, . . . , δm) = u(δ1)⊗ · · · ⊗ u(δm), δj = ±1. (3)

Then(u(δ1, . . . , δm)|
∏m
j=1δj = ±1) is an orthonormal basis of1±

2m,k with respect to the

standard scalar product ofC2m .
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4. General properties of twistor spinors

In this section we recall some properties of twistor spinors which we will need in the
following calculations. For proofs see [3]. Let(Mn, g) be an oriented semi-Riemannian
spin manifold of dimensionn ≥ 3. We denote byS the spinor bundle of(Mn, g), by
∇s : 0(S) → 0(T ∗M ⊗ S) the spinor derivative given by the Levi-Civita connection of
(Mn, g) and byD : 0(S) → 0(S) the Dirac operator onS. Letp : TM⊗ S → TM⊗ S be
the projection onto the kernel of the Clifford multiplicationµ. Thetwistor operator

D : 0(S)
∇S→0(T ∗M ⊗ S)

g=0(TM ⊗ S)
p→0(kerµ)

is locally given by

Dϕ =
n∑
k=1

εksk ⊗
(

∇S
sk

+ 1

n
sk ·Dϕ

)
,

where(s1, . . . , sn) is a local orthonormal basis andεk = g(sk, sk) = ±1. A spinor field
ϕ ∈ 0(S) is called twistor spinor ifDϕ = 0.

Proposition 1. For a spinor fieldϕ ∈ 0(S), the following conditions are equivalent:
1. ϕ is a twistor spinor.
2. ϕ satisfies the so-called twistor equation

∇S
Xϕ + 1

n
X ·Dϕ = 0 (4)

for all vector fields X.
3. There exists a spinor fieldψ ∈ 0(S) such that

ψ = g(X,X)X · ∇S
Xϕ (5)

for all vector fields X with|g(X,X)| = 1.

The dimension of the spaceT (Mn, g) of all twistor spinors is conformally invariant and
bounded by

dimT (Mn, g) ≤ 2 · 2[n/2].

If (Mn, g) is simply connected and conformally flat, dimT (Mn, g) = 2·2[n/2]. In particular,
the twistor spinors on the semi-Euclidean space(Rn,k, 〈, 〉n,k) are given by

T (Rn,k) = {ϕ ∈ C∞(Rn,k,1n,k)|ϕ(x) = u+ x · v; u, v ∈ 1n,k}.
Let R be the scalar curvature and Ric be the Ricci curvature of(Mn, g).K : TM → TM
denotes the(1,1)-Schouten tensor of(Mn, g)

K(X) = 1

n− 2

(
R

2(n− 1)
X − Ric(X)

)
.
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Furthermore, letW be the(4,0)-Weyl tensor of(M, g)and let us denote by the same symbol
the corresponding(2,2)-tensor fieldW : 32M → 32M. Then we have the following
proposition.

Proposition 2. Letϕ ∈ 0(S) be a twistor spinor. Then

∇S
XDϕ = n

2
K(X) · ϕ, (6)

W(η) · ϕ = 0 (7)

for all vector fields X and 2-formsη.

Finally, we recall two possibilities to obtain new manifolds with twistor spinors from a
given one.

Let (M̃n, g̃) be a simply connected parallelizable semi-Riemannian manifold and let
A ⊂ I (M̃, g̃) denote a discrete subgroup of orientation preserving isometries of(M̃, g̃).
We trivialize the spin structure of(M̃, g̃) with respect to a fixed global orthogonal ba-
sis field a = (a1, . . . , an). For γ ∈ A we denote by0(x) ∈ SO(n, k) the matrix of
dγx with respect toa(x) and a(γ (x)). Then there are two lifts̃0± of 0 into Spin
(n, k).

Let E(A) be the set of all left actions ofA on M̃ × Spin(n, k) such that

ε(γ )(x, a) = (γ (x), ε(γ, x) · a) and ε(γ, x) = 0̃(x)±.

The set of left actionsE(A) corresponds to the set of spinor structures of the oriented
semi-Riemannian manifoldM = M̃/A. The spinor bundle onM corresponding toε ∈
E(A) is given by

Sε = M̃ ×1n,k|(A,ε),
whereε(γ )(x, v) = (γ (x), ε(γ, x) · v) for all γ ∈ A. Hence, the spinor fields onM
corresponding toε ∈ E(A) are given by theε-invariant functions

0(Sε) = C∞(M̃,1n,k)ε := {ϕ ∈ C∞(M̃,1n,k)|ϕ(γ (x)) = ε(γ, x) · ϕ(x)},
and for the twistor spinors onM with the spin structureε we have the following proposi-
tion.

Proposition 3. The twistor spinors onM = M̃/A with respect to the spin structureε ∈
E(A) are given by

T ((M, g), ε) = {ϕ ∈ T (M̃, g̃)|ϕ isε-invariant}.
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Let (Mn+1, g) be a semi-Riemannian spin manifold with spinor bundleSM and let
Fn ⊂ Mn+1 be a non-degenerate oriented hypersurface inMn+1. We denote byη : F →
TM the Gauss map ofF, κ(η) := g(η, η) = ±1. It is well known that the spinor bundle
SF of (F, g|F ) with respect to the spin structure onF induced by the embedding is iso-
morphic toSM|F in case of even dimensionn and toS±

M |F in case of odd dimensionn.
Using this identification the Clifford multiplication and the spinor derivative are expressed
by

X · (ϕ|F ) = (X · ϕ)|F , ∇SF
X (ϕ|F ) =

(
∇S

(±)
M

X ϕ + 1

2
κ(η)∇M

X η · η · ϕ
)∣∣∣∣
F

,

whereϕ ∈ 0(S(±)M ), X ∈ TFandϕ|F always means the spinor field in0(SF ) corresponding
to ϕ with respect to the above-mentioned isomorphism.

Proposition 4. If Fn ⊂ Mn+1 is an umbilic hypersurface andϕ ∈ 0(S
(±)
M ) is a twistor

spinor on M, thenϕ|F ∈ 0(SF ) is a twistor on F.

Proof. Let λ ∈ C∞(F ) be the function satisfying∇M
X η = λX. Then

∇SF
X (ϕ|F ) =

(
∇S

(±)
M

X ϕ + 1

2
κ(η)λX · η · ϕ

)∣∣∣∣
F

.

If ϕ ∈ 0(S(±)M ) is a twistor spinor, from Proposition 1, (4), it follows that

κ(X)X · ∇S
(±)
M

X ϕ = 1

n+ 1
D
(±)
M ϕ

for eachX ∈ TF with κ(X) = g(X,X) = ±1. Hence,

κ(X)X · ∇SF
X (ϕ|F ) =

(
1

n+ 1
D
(±)
M ϕ − 1

2
κ(η)λη · ϕ

)∣∣∣∣
F

.

The right-hand side is independent ofX ∈ TF. Therefore, according to Proposition 1,ϕ|F
is a twistor spinor onF . �

5. Twistor spinors on indecomposable, non-conformally flat Lorentzian symmetric
spaces

Let us first consider the simply connected solvable Lorentzian symmetric spaceMn
λ =

(Rn, gλ), where

(gλ)(s,t,x) = 2 ds dt +
n−2∑
j=1

λjx
2
j ds2 +

n−2∑
j=1

dx2
j ,

andλ = (λ1, . . . , λn−2), λi ∈ R\{0}, n ≥ 3. Let30 := −∑n−2
j=1λj . We fix the following

global orthonormal basis onMn
λ :
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a0̄(y) := ∂

∂s
(y)− 1

2

n−2∑
j=1

λjx
2
j + 1

 ∂

∂t
(y),

a0(y) := ∂

∂s
(y)− 1

2

n−2∑
j=1

λjx
2
j + 1

 ∂

∂t
(y),

aj (y) := ∂

∂xj
(y), j = 1, . . . , n− 2,

wherey = (s, t, x1, . . . , xn−2) ∈ Mn
λ . The vector fieldV (y) := (∂/∂t)(y) is isotropic and

parallel. The Ricci tensor ofMn
λ is given by

Ric(X) = 30 · g(X, V )V,
the scalar curvatureR vanishes. Therefore, the Schouten tensor satisfies

K(X) = − 1

n− 2
30 · g(X, V )V . (8)

For the Weyl tensorW : 32Mλ → 32Mλ one has

W(a0 ∧ aj ) = W(a0 ∧ aj )
= (

λj + (1/(n− 2))30
)
V ∧ aj , j = 1, . . . , n− 2,

W(aα ∧ aβ) = 0 for all other indicesα, β,
(9)

whereTMλ is identified withT ∗Mλ using the metricgλ. In particular,Mλ is conformally
flat if and only ifλ = (λ, . . . , λ), λ ∈ R\{0}.

SinceMλ is simply connected, it has an uniquely determined spin structure. We trivialize
this spin structure using the global orthonormal basis(a0, a0, a1, . . . , an−2) and identify
the spinor fields with the smooth functionsC∞(Mλ,1n,1). The spinor derivative is defined
by

∇S
Xϕ = X(ϕ)+ 1

2

∑
1≤k<l≤n

εkεlg(∇LC
X sk, sl)sk · sl · ϕ,

where(s1, . . . , sn) is a local orthonormal basis andεj = g(sj , sj ) = ±1. This gives for
the spinor derivative onMλ

∇S
∂/∂tϕ = ∂

∂t
ϕ, (10)

∇S
∂/∂sϕ = ∂

∂s
ϕ + 1

2

n−2∑
j=1

λjxjaj · V · ϕ, (11)

∇S
∂/∂xj

ϕ = ∂

∂xj
ϕ, (12)

∇S
a0
ϕ = a0(ϕ)+ 1

2

n−2∑
j=1

λjxjaj · V · ϕ, (13)
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∇S
a0
ϕ = a0(ϕ)+ 1

2

n−2∑
j=1

λjxjaj · V · ϕ. (14)

The vector space1n,1 is isomorphic to1n−2,0 ⊗ C2. Let us denote by1V the subspace

1V := 1n−2,0 ⊗ Cu(−1) ⊂ 1n,1.

Using formulas (1)–(3) one obtains that a spinor fieldϕ ∈ C∞(Mλ,1n,1) satisfiesV ·ϕ = 0
if and only if the image ofϕ lies in1V .

Proposition 5. The spaceP(Mλ) of parallel spinors ofMλ is

P(Mλ) = {ϕ ∈ C∞(Mλ,1n,1)|ϕ = constant∈ 1V }.
In particular, dimP(Mλ) = 1

2 · 2[n/2].

Proof. From (8)–(10) it follows thatϕ ∈ C∞(Mλ,1n,1) is parallel if and only ifϕ depends
only ons and

∂ϕ

∂s
= −1

2

n−2∑
j=1

λjxjaj · V · ϕ. (15)

Therefore,

0 = ∂2ϕ

∂xk∂s
= −1

2
λkak · V · ϕ.

Sinceλk 6= 0 andak is space-like, this yieldsV · ϕ = 0. Hence, because of (15),ϕ has to
be constant. �

Proposition 6. LetMλ be non-conformally flat. Then each twistor spinor onMλ is parallel.
In particular,

dimT (Mλ) = 1
2 · 2[n/2].

Proof. Letϕ ∈ C∞(Mλ,1n,1) be a twistor spinor. Then according to (7) of Proposition 2,
W(η) · ϕ = 0 for each 2-formη. Using (9) we obtain(

λj + 1

n− 2
30

)
aj · V · ϕ = 0, j = 1, . . . , n− 2.

SinceMλ is not conformally flat andaj is space-like, it follows that

0 = V · ϕ. (16)

Furthermore, we have

∇S
XDϕ

(6)= n

2
K(X) · ϕ.
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Using (8) and (16) we obtain

∇S
XDϕ = − n

2(n− 2)
30g(X, V )V · ϕ = 0.

Hence,Dϕ is parallel. From Proposition 5, it follows thatDϕ is constant andV ·Dϕ = 0.
Then the twistor equation and (10) yield

0 = ∇S
V ϕ + 1

n
V ·Dϕ = ∂

∂t
(ϕ).

Therefore,ϕ does not depend ont . The twistor equation implies that

−a0 · ∇S
a0
ϕ = a0 · ∇S

a0
ϕ = 1

n
Dϕ.

Then the formulas (13), (14) and (16) give

Dϕ = −na0 ·
 ∂

∂s
− 1

2

n−2∑
j=1

λjx
2
j + 1

 ∂

∂t

ϕ

= na0 ·
 ∂

∂s
− 1

2

n−2∑
j=1

λjx
2
j − 1

 ∂

∂t

ϕ.

Sinceϕ does not depend ont we obtain

2Dϕ = n(a0 − a0) · ∂
∂s
(ϕ) = nV · ∂

∂s
(ϕ) = n

∂

∂s
(V · ϕ)(16)= 0.

Therefore,ϕ is harmonic and the twistor equation implies thatϕ is parallel. �

Now, let (Mn, g) be a non-conformally flat, non-simply connected, indecomposable
Lorentzian symmetric space of dimensionn ≥ 3. Then, according to Theorems 1, 2 and
4, (Mn, g) is isometric toMn

λ/A, whereA is a discrete subgroup of the centralizerZλ :=
ZI(Mλ)(G(Mλ)).

1. Case. There existi ∈ {1, . . . , n−2} such thatλi > 0 or(i, j) such that(λi/λj ) /∈ Q2.
ThenZλ ' R = {γα|γα(s, t, x) = (s, t + α, x), α ∈ R}.

Let γ ∈ A. With respect to the global basic(a0, a0, a1, . . . , an−2) the differen-
tial dγy corresponds to the matrix0(y) ≡ E ∈ SO(n,1). Hence,0±(y) = ±1 ∈
Spin(n,1). Therefore, we have two spin structures onM = Mλ/A corresponding
to the homomorphisms Hom(A;Z2). If ε ∈ Hom(A,Z2) is not trivial, there are no
ε-invariant constant spinor fields onMλ. From Propositions 3, 5 and 6 it follows that
the twistor spinors onM = Mλ/A are given by

T (Mλ/A, ε) =
{ {ϕ ∈ C∞(M,1V )|ϕ constant}, ε trivial,

{0}, ε non-trivial.

2. Case. Let λj = −k2
i < 0 and(ki/kj ) ∈ Q for all i, j = 1, . . . , n− 2. Then
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Zλ ' {
γm,α|γm,α(s, t, x) := (s + β, t + α, (−1)m1x1, . . . , (−1)mn−2xn−2),

whereα ∈ R, m = (m1, . . . , mn−2) ∈ Zn−2, β = π · mi
ki
,

i = 1, . . . , n− 2} ' Z⊕ R.
A discrete subgroupAm,α ⊂ Zλ is generated byγm,0 andγ0,α. Let us suppose that

∑n−2
i=1mi

is even since otherwiseMλ/Am,α is not orientable.(dγm,α)y corresponds to the matrix

0(y) =


1 0

1
(−1)m1

. . .

0 (−1)mn−2

 .

Hence0̃±(y) = ±em1
1 · · · emn−2

n−2 . Letmi1, . . . , mis be the odd elements in the tupelm (s ∈
2Z), and let us denote byωm ∈ Spin(n,1) the element

ωm = ei1 · · · eis .
Then because ofω2

m = (−1)s/2, ωm is an involution on1n−2,0 if s ≡ 0(4) and an almost
complex structure ifs ≡ 2(4). The eigenspaces ofωm to the eigenvalues±1 and±i,
respectively, have the same dimension (see formulas (1) and (2)).

The manifoldMλ/A0,α, α 6= 0, has two spin structures and the twistor spinors are given
as in Case 1.Mλ/Am,0,m 6= 0, has two spin structures, described by the homomorphisms
ε± ∈ Hom(Am,0,Spin(n,1)) given byε±(γm,0) = ±ωm. Then, according to Propositions
3, 5 and 6 the twistor spinors onM = Mλ/Am,0 are

T (Mλ/Am,0, ε±)=
{
ϕ ∈ C∞(Mλ,1n,1)|ϕ(y) ≡ v ⊗ u(−1),

wherev ∈ 1n−2,0 andωm · v = ±v} .
Hence,

dimT (Mλ/Am,0, ε±) =
{

0 if s ≡ 2(4),
1
4 · 2[n/2] if s ≡ 0(4).

The manifoldMλ/Am,α,m 6= 0, α 6= 0, has four spin structures corresponding to the
homomorphismsε ∈ Hom(Am,α; Spin(n,1)) given byε(γm,0) = ±ωm, ε(γ0,α) = ±1.
Hence,

T (Mλ/Am,0, ε) =
{ {0} ε(γ0,α) = −1,
T (Mλ/Am,0, ε±), ε(γ0,α) = 1, ε(γm,0) = ±ωm.

Summing up, we have the following proposition.

Proposition 7. Let (Mn, g) be an indecomposable, non-conformally flat Lorentzian sym-
metric spin manifold of dimensionn ≥ 3. Then each twistor spinor is parallel and the
dimension of the space of twistor spinors is

dimT (Mn, g) = q · 2[n/2],
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where q = 0, 1
4 or 1

2, depending on the fundamental groupπ1(M) and on the spin
structure.

6. Twistor spinors on indecomposable conformally flat Lorentzian symmetric spaces
of non-constant sectional curvature

According to Theorems 1, 2 and 4 there are two isometry classes of indecomposable,
conformally flat, simply connected Lorentzian symmetric spaces of dimensionn ≥ 3 and
non-constant sectional curvature, namely

Mn
± := (Rn, g±), (g±)(s,t,x) = 2 ds dt ± ‖x‖2 ds2 +

n−2∑
j=1

dx2
j .

We known that dimT (Mn±) = 2 · 2[n/2]. The twistor spinors are given by the following
formula. Letω1, ω2, ω3, ω4 ∈ 1n−2,0 and let us denote byϕω1,ω2,ω3,ω4 ∈ C∞(Mn±,1n,1)
the following smooth functions

ϕω1,ω2,ω3,ω4(s, t, x) := (∓f ′(s)w3 − f (s)w4 + x · w1)⊗ u(1)+ [−2ω1t + ω2

+x · (f (s)ω3 + f ′(s)ω4)] ⊗ u(−1),

f (s) =
{

sinh(s) forMn+,
sin(s) forMn−.

Proposition 8. The twistor spinors onMn± are

T (Mn
±) = {ϕw1,w2,w3,w4|w1, w2, w3, w4 ∈ 1n−2,0}.

Proof. We use the identification

1n,1 '1n−2,0 ⊗12,1
∼→1n−2,0 ⊕1n−2,0,

ϕ = ϕ1 ⊗ u(1)+ ϕ2 ⊗ u(−1) 7→ (ϕ1, ϕ2).

Then according to (1) and (2) the Clifford multiplication corresponds to

X · ϕ = (−X · ϕ,X · ϕ2) if X ∈ span(a1, . . . , an−2), a0 · ϕ = (−ϕ2,−ϕ1),

a0 · ϕ = (−ϕ2, ϕ1), V · ϕ = (0,2ϕ1).

For the spinor derivative we obtain

∇S
a0̄
ϕ = (a0̄(ϕ1), a0̄(ϕ2)± x · ϕ1), 1Sa0

ϕ = (a0(ϕ1), a0(ϕ2))± x · ϕ1),

∇S
ak
ϕ = (ak(ϕ1), ak(ϕ2)), k = 1, . . . , n− 2.

Let ϕ = (ϕ1, ϕ2) be a twistor spinor onMn±. Then, according to Proposition 1, there exists
a spinor fieldψ = (ψ1, ψ2) onMn± such that

(ψ1, ψ2) = ak · ∇S
ak
ϕ = (−ak · ak(ϕ1), ak · ak(ϕ2)) (17)
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for eachk = 1,2, . . . , n− 2. Therefore,ϕ1(s, t, ·) andϕ2(s, t, ·) are twistor spinors on the
Euclidean spaceRn−2. Hence,

ϕi(s, t, x) = ui(s, t)+ x · vi(s, t), i = 1,2,

whereui, vi : R2 → 1n−2,0. From (17) follows

ψ1(s, t, x) = v1(s, t) and ψ2(s, t, x) = −v2(s, t).

Furthermore,ψ = (ψ1, ψ2) satisfies

(ψ1, ψ2) = −a0 · ∇S
a0
ϕ = a0 · ∇S

a0
ϕ.

Therefore

v1 =
(
∂

∂s
− 1

2
(±‖x‖2 + 1)

∂

∂t

)
(u2 + x · v2)± x · (u1 + x · v1), (18)

v1 = −
(
∂

∂s
− 1

2
(±‖x‖2 − 1)

∂

∂t

)
(u2 + x · v2)∓ x · (u1 + x · v1), (19)

−v2 =
(
∂

∂s
− 1

2
(±‖x‖2 + 1)

∂

∂t

)
(u1 + x · v1), (20)

−v2 =
(
∂

∂s
− 1

2
(±‖x‖2 − 1)

∂

∂t

)
(u1 + x · v1), (21)

Adding Eqs. (18) and (19) gives 2v1 = −(∂/∂t)u2 − x · (∂/∂t)v2 and after differentiation
with respect toxk, 0 = −ak(∂/∂t)v2. Hence,

∂

∂t
v2 = 0 and v1 = −1

2

∂

∂t
u2. (22)

Using this and subtracting Eq. (19) from Eq. (18), we obtain

0 = ∓x · u1 − ∂

∂s
u2 − x · ∂

∂s
v2. (23)

Differentiating Eq. (23) shows that

u1 = ∓ ∂

∂s
v2 and

∂

∂t
u1 = 0. (24)

Inserting this in (23) and using (22) we obtain

∂

∂s
u2 = 0 and

∂

∂s
v1 = 0. (25)

Hence,u2 = u2(t), v1 = v1(t), v2 = v2(s) andu1 = u1(s). By subtracting Eq. (20) from
Eq. (21), we obtain

0 = x · ∂
∂t
v1 + ∂

∂t
u1 = x · v′

1(t).
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Therefore, we havev1(t) ≡ w1 ∈ 1n−2 and, because of (22),u2(t) = −2tw1+w2. Adding
Eq. (21) with Eq. (20) yields

−2v2 = 2u′
1(s)∓ ‖x‖2v′

1(t) = 2u′
1(s),

so that, regarding (24),v2(s) = ±v′′
2(s). Therefore,

v2(s) = f (s)w3 + f ′(s)w4 and u1(s) = ∓f ′(s)w3 − f (s)w4,

f (s) =
{

sinh(s) forMn+,
sin(s) for Mn−.

Consequently, the twistor spinorϕ is of the formϕ = ϕw1,w2,w3,w4. �

Now let(Mn, g)be an indecomposable, conformally flat non-simply connected Lorentzian
symmetric space of dimensionn ≥ 3 and non-constant sectional curvature. Then(Mn, g)

is isometric toMn+/A or toMn−/A, whereA is a discrete subgroup of

Z+ := ZI(M+)(G(M+)) = {ϕα|ϕα(s, t, x) = (s, t + α, x); α ∈ R}
in the first and of

Z− := ZI(M−)(G(M−))= {ϕm,α|ϕm,α(s, t, x)
= (s +mπ, t + α, (−1)mx); m ∈ Z, α ∈ R}

in the second Case.
1. Case. M = Mn+/Aα,Aα = Zϕα. Then there are two spin structures corresponding to
ε ∈ Hom(Aα,Z2). Propositions 3 and 8 show

T (M, ε) =
{ {ϕ0,w2,w3,w4|w2, w3, w4 ∈ 1n−2,0}, ε = 1,

{0}, ε 6= 1.

2. Case.M = Mn−/Am,α, Am,α = 〈ϕm,0, ϕ0,α〉. If m is even andα 6= 0, we have the same
result as in Case 1, sincef (s) = sin(s) is 2πZ-invariant. Ifm is odd,M is orientable
only if n is even. ThenM2k has two spin structures ifα = 0 and four spin structures if
α 6= 0. Propositions 3 and 8 show

T (M2k
− /Am,0,ε) =


{0}, if n = 2k ≡ 0(4),
{ϕw1,w2,w3,w4|w1,

w2 ∈ 1±
n−2,0, w3, w4 ∈ 1∓

n−2,0}, if n = 2k ≡ 2(4),
ε(ϕm,0) = ±e1 · · · en−2,

T (M2k
− /Am,α,ε) =



{0}, if ε(ϕ0,α) = −1 or
n = 2k ≡ 0(4),

{ϕ0,w2,w3,w4|w2 ∈ 1±
n−2,0,

w3, w4 ∈ 1∓
n−2,0}, if n = 2k ≡ 2(4),

ε(ϕ0,α) = 1 andε(ϕm,0)
= ±e1 · · · en−2.

Summing up, we have in particular the following proposition.
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Proposition 9. Let(Mn, g) be an indecomposable, conformally flat Lorentzian spin mani-
fold (Mn, g) of non-constant sectional curvature and dimensionn ≥ 3.Then the dimension
of the space of twistor spinors is

dimT (Mn, g) = q · 2[n/2],

whereq = 0, 3
4,1,

3
2 or 2 depending on the fundamental groupπ1(M) and on the spin

structure.

7. Twistor spinors on Lorentzian symmetric spaces of constant sectional curvature

Let ψu,v ∈ C∞(Rn+1,k,1n+1,k) denote the twistor spinors on the pseudo-Euclidean
spaceRn+1,k:

ψu,v(x) := u+ x · v, u, v ∈ 1n+1,k.

The pseudo-sphereSn1(r) ⊂ Rn+1,1 and the pseudo-hyperbolic spaceHn
1 (r) are umbilic

hypersurfaces. Using the identification of the spinor bundle of the hypersurface with that
of the external space (see Section 4) we obtain from Proposition 4 the following.

Proposition 10. The twistor spinors onSn1(r) andHn
1 (r) with the induced spin structure

are

T (Sn1(r)) =
{
ψu,v|Sn1 (r)

∣∣∣∣ u, v ∈ 1n+1,1 if n ≡ 0(2)
u ∈ 1+

n+1,1, v ∈ 1−
n+1,1 if n ≡ 1(2)

}
,

T (Hn
1 (r)) =

{
ψu,v|Hn

1 (r)

∣∣∣∣ u, v ∈ 1n+1,2 if n ≡ 0(2)
u ∈ 1+

n+1,2, v ∈ 1−
n+1,2 if n ≡ 1(2)

}
.

The Lorentzian manifoldSn1(r)/{±I } is orientable if and only ifn is odd, hence letn
be odd. The volume formwn+1,1 = e1 · · · en+1 ∈ Spin(n + 1,1) satisfiesw2

n+1,1 =
(−1)(((n+1)/2)+1). Therefore,Sn1(r)/{±I } has no spin structure, ifn ≡ 3(4) and two spin
structures, ifn ≡ 1(4). The spinor fields to these different spin structures can be identified
with the invariant functionsC∞(Sn1(r),1

+
n+1,1)

ε±, whereε± is theZ2-action given by

(ε±(−1)ϕ)(x) = ±wn+1,1 · ϕ(−x) = ±ϕ(−x).
From Propositions 3 and 10, it follows that

T (S4k+1
1 (r)/{±I }, ε) =

{ {ψ
u+,0|S4k+1

1
|u+ ∈ 1+

4k+2,1} if ε = ε+,
{ψ0,v−|S4k+1

1
|v− ∈ 1−

4k+2,1} if ε = ε−.

Now, let us consider a Lorentzian symmetric spaceMn of constant negative sectional
curvature. ThenMn is isometric to a Lorentzian covering ofHn

1 (r)/{±I }. Let

π̃ : H̃ n
1 (r) = R× Rn−1 → Hn

1 (r) ⊂ R2,2 × Rn−2,

(t, x) 7→
(√

r2 + ‖x‖2 cost,
√
r2 + ‖x‖2 sint, x

)
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be the universal Lorentzian covering ofHn
1 (r). LetQ̂ denote the reduction of the trivial spin

structureQ ofRn+1,2 to the subgroup Spin(n,1) given by the Gauss map. TheñQ := π̃∗Q̂
is the uniquely determined spin structure of̃Hn

1 (r). The spinor fields of̃Hn
1 (r) can be

identified with the smooth functionsC∞(H̃ n
1 (r),1

(±)
n+1,2), the twistor spinors are given by

T (H̃ n
1 (r)) =

{
ψ̃u,v := ψu,v|Hn

1 (r)
◦ π̃

∣∣∣ψu,v|Hn
1 (r)

∈ T (Hn
1 (r))

}
.

Let

πm : Nn
m → Hn

1 (r), (
√· cost,

√· sint, x) 7→ (
√· cos(mt),

√· sin(mt), x)

(
√· =

√
r2 + ‖x‖2), be the Lorentzian covering ofHn

1 (r)with respect tomZ ⊂ π1(H
n
1 (r))

= Z,m = 1,2,3, . . . . The manifoldNn
m has two spin structures. The corresponding

spinor fields are given by theε±m-invariant functionsC∞(H̃ n
1 (r),1

(±)
n+1,2)

ε±m , whereε±m
is themZ-action:

(ε±m(mz)ϕ)(t, x) = (±1)zϕ(t + 2πmz, x).

Therefore, the twistor spinors onNn
m are

T (Nn
m, ε) =

{ {
{ψu,v|Hn

1 (r)
◦ πm

∣∣∣ψu,v|Hn
1 (r)

∈ T (Hn
1 (r))

}
if ε = ε+m,

{0} if ε = ε−m.

Finally, let us consider the manifoldsNn
m/{±I }. SinceNn

m/{±I } is orientable if and only ifn
is odd, letn be odd. For the volume formwn+1,2 = e1 · · · en+1 ∈ Spin(n + 1,2) we have
w2
n+1,2 = (−1)(((n+1)/2)+2). Therefore, there is no spin structure onNn

m/{±I } if n ≡ 1(4)
and there are four spin structures in casen ≡ 3(4). The spinor fields are given by the

functionsC∞(H̃ n
1 (r),1

(+)
n+1,2)

(ε±m,δ±), invariant under themZ-actionε±m and theZ2-action
δ± given by

(δ±(−1)ϕ)(t, x) = ±wn+1,2 · ϕ(t +mπ,−x) = ±ϕ(t +mπ,−x).
Then, the twistor spinors are

T (N4k+3
m /{±I }, ε) =


{0}, ε = (ε−m, δ±) or

ε = (ε+m, δ−), m ≡ 0(2),

{ψ̃u+,0

∣∣∣u+ ∈ 1+
4k+4,2 }, ε = (ε+m, δ+),

{ψ̃0,v−
∣∣∣v− ∈ 1+

4k+4,2 }, ε = (ε+m, δ−),m ≡ 1(2).

Summing up, we have in particular the following theorem.

Proposition 11. Let(Mn, g) be a Lorentzian symmetric spin manifold of constant sectional
curvaturek 6= 0 and dimensionn ≥ 3 , then the dimension of the space of twistor spinor is

dimT (Mn, g) = q · 2[n/2],

whereq = 0,1,or 2 depending onπ1(M) and on the spin structure.
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